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The trajectory of a spherical magnet which rolls without slipping on a conductive plate is modelled. A time stepping ~T −Ω method

is used to find the electromagnetic force and torque. The trajectory is computed for different initial conditions and compared to ini-

-tial conditions and compared to performed experiments.
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I. Introduction

THE COUPLING between the partial differential equa-

tions (PDEs) that describe the electromagnetic field and

the ordinary differential equations (ODEs) that determine the

motion of a moving conducting object can be a particularly

difficult problem especially when the control parameters of the

ODEs use variables that issue from the field problems.

Most coupled mechanical-electromagnetic problems con-

cern devices which have only one mechanical degree of

freedom [1]-[2]-[3], amongst the exceptions are magneto-

hydrodynamical flows. Most cases describe either the field-

circuite coupling [4] or the FE mechanical coupling [5].

If a moving spherical magnet is on top of a conductive

plate, eddy currents are induced and tend to slow down the

spherical magnet until it stops. This is a transient problem,

the position and the direction of the magnetization are the

five mechanical degrees of freedom. The control parameters

of the ODEs are the Lorentz force and the torque, which are

calculated by solving the EM field problem. Similarly, the

electromagnetic field depends on the position of the moving

magnet. The aim here is to find the dynamics of the magnet

under different initial conditions.
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Fig. 1. Sketch of the magnet on top of a conducting plate,the eddy-
currents are also shown on the figure.

II. Governing equations

The spherical magnet (radius R) is assumed to roll without

slipping on a horizontal plane. The position ~X = X(t) ~kx +

Y(t) ~ky + R ~kz of its center of gravity is obviously time-

dependent, as is the (planar) velocity ~̇X = Ẋ ~kx + Ẏ ~ky. The

magnetization is directed along

~d(t) = −sinθsinψ~kx + sinθcosψ~ky+ cosθ ~kz (1)

where ψ, θ are the precession and nutation Euler angles (Fig.

1). The intrinsic rotation ϕ around the axis of direction ~d has

to be considered to describe the motion of the magnet but has

no influence whatsoever on the magnetic field.

Due to the no-slip condition, the instantaneous rotation

vector ~ω can be expressed as a function of the velocity

components. It has only one kinematically free component ωz:

~ω(t) = −Ẏ(t)/R ~kx+ Ẋ(t)/R ~ky+ωz(t) ~kz (2)

The motion of the magnet is governed by the following

dynamical system of equations:
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(3)

where m is the mass of the magnet ; and fx
~kx+ fy ~ky, Γx

~kx+

Γy
~ky+Γz

~kz are the applied force and the torque respectively.

If the plane is the top of a copper plate, the force and torque

are both due to eddy currents induced by the motion of the

magnet (rolling friction is neglected).

The eddy-currents have to be determined, a time-dependent
~T −Ω formulation is used here. The magnetic field due to



the magnet is given by the dipolar expression (outside the

magnet):

~hs = ~∇~x (Ωs) with Ωs = −
M ~d · ~xX

4π | ~xX|3
and ~xX = ~x− ~X (4)

where M is the magnetic moment of the magnet. The time

derivative of ~hs is then ~̇hs = ~∇~x
(

Ω̇s

)

where

Ω̇s =
M

4π | ~xX|3
~d ·
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(5)

Notice that the source electromotive force depends on the

components of the dynamical system (3).

In this ~T −Ω formulation, the system of PDEs to be solved

both in the conductive plate D and outside the plate E3 −D

is:

~∇×

(

1

σ
~∇× ~T

)

+µ0 ∂t

(

~T + ~∇Ω
)

+µ0
~̇hs = ~0 in D (6)

~∇· ~T = ~0 in D (7)

~T ×~n = ~0 on ∂D ; ~T = 0 in E3−D (8)

~∇·
[

µ0

(

~∇Ω+ ~T
)]

= 0 in E3 (9)

The eddy current density and magnetic field are ~j = ~∇× ~T and
~h = ~T + ~∇Ω and the total Lorentz force and torque exerted on

the plate are respectively (d~x3 = dxdydz)

− ~f =

∫

D

(

~∇× ~T
)

×µ0
~hs d~x 3

−~Γ =

∫

D

~xX×
((

~∇× ~T
)

×µ0
~hs

)

d~x 3
(10)

The force and torque are exactly equal and opposite to those

exerted on the magnet.

The system (6-9) has to be solved in time. A time step τ

is given ; ~T , Ω and an estimation (described below) of ~̇hs

at discrete times nτ are denoted ~T n, Ωn and ~̇h∗ n
s . The full

time-implicit weak form version of the ~T -system (6-7-8) is:

∀~T
′

such that ~T
′
×~n = ~0 on ∂D, ~∇· ~T ′ = 0 on D

∫

D

(

1

σ
~∇× ~T n+1 · ~∇× ~T ′+

µ0

τ

[

~T n+1+ ~∇Ωn+1
]

· ~T ′
)

d~x3 = (11)

∫

D

µ0

τ

[

~T n+ ~∇Ωn
]

· ~T ′d~x 3 −

∫

D

µ0
~̇h∗ n+1

s · ~T ′d~x3

and, since the only contribution of ~∇ · ~T is the jump of ~T ·~n

on ∂D, the Biot and Savart form of (9) reduces to:

Ωn+1(~x) =
µ0

4π

∫

∂D

~T n(~y) ·~n

|~x−~y|
d~y2 (12)

If ~̇h∗ n+1
s were known, (11-12) would allow the computation of

(~T n+1, Ωn+1) from (~T n, Ωn) (at the cost of iterations between

(11) and (12) to avoid the direct inversion of a non-sparse

matrix). But if ~̇h∗ n+1
s corresponds to ~̇h n+1

s , the value of ~̇h at

the time (n+ 1)τ, the components of the dynamical system

(3) have to be computed implicitly. It is possible to solve

such a system implicitly, but it requires an iterative process to

handle the non-linearities. To overcome this drawback, a kind

of semi-implicit method is used. (~Xn+1, ~dn+1, ~ωn+1) are found

with a time step of (3), with an explicit high order Runge-

Kutta method (Dormand-Prince 5/4), where the components

of force and torque (10) are frozen at time nτ. Then (11-12)

are solved implicitly with ~̇h∗ n+1
s = ~̇hs(~X

n+1, ~dn+1, ~ωn+1).
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Fig. 2. Distance travelled vs time for various initial directions of

magnetization (~d0 = ~d(t = 0)) being respectively equal to ~kx,~ky,~kz).

III. Results

As a first test, to evaluate the accuracy of the model, a spher-

ical Nd-Fe-B magnet (R = 6mm, M = 1 Am2) is thrown with

an initial speed ~̇X(t = 0) = ẋ0
~kx (ẋ0 = 1m/s) on a copper plate

(thickness 5mm). The initial direction of magnetization varies.

The spherical magnet has a linear trajectory ~X(t) = x(t)~kx.

Fig. 2 shows the time dependence of the distance x when
~d0 = ~kx,~ky,~kz. For any initial direction, the distance travelled

before the sphere comes to a stop is between the one for
~kx,~kz (most efficient braking situation) and the one for ~ky (least

efficient case). It is difficult to determine the actual direction

of ~d0 in the experiments (the magnet comes from a ramp with

an elbow). However many experiments confirmed that the total

distance travelled before coming to a full stop is between 3

and 6cm.
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